Related Questions with Solutions

Questions

Quetion: 01

Given that $(1 + x + x^2)^n = a_0 + a_1x + a_2x^2 + ... + a_{2n}x^{2n}$, Let $a_0 + a_1 + a_2 + ... + a_{2n} = \alpha$ $a_0 - a_1 + a_2 - a_3 ... + a_{2n} = \beta$ $a_0^2 - a_1^2 + a_2^2 - a_3^2 + ... + a_{2n}^2 = \gamma$ then $\alpha + \beta + \gamma =$ A. 0 B. $3^n + 1 + a_n$ C. $3^n + 1 - a_n$ D. $3^n - 1 + a_n$

Solutions

Solution: 01

 $[1 + x + x^2]^n = a_0 + a_1x + a_2x^2 + ... + a_{2n}x^{2n}$ put x = 1, $3^n = a_0 + a_1 + a_2 + \dots + a_{2n} = \alpha$ put x = -1, $1 = a_0 - a_1 + a_2 \dots + a_{2n} = \beta$ $(1+x+x^2)^n \left(1-\frac{1}{x}+\frac{1}{x^2}\right)^n =$ $(\alpha_0 + a_i x + \ldots + a_{2n} x^{2n}) \left(a_0 - \frac{a_1}{x} + \frac{a_2}{x^2} \ldots + \frac{a_{2n}}{x^{2n}}\right)$ coefficient of $x^0 \ln \left(1 + x + x^2\right)^n \left(1 - \frac{1}{x} + \frac{1}{x^2}\right)^n$ is $a_0^2 - a_1^2 + a_2^2 \dots + o_{2m}^2$ coefficient of $x^0 \ln \left(1 + x + x^2\right)^n \left[1 - \frac{1}{x} + \frac{1}{x^2}\right]^n$ $\frac{(x^2 + x + 1)^n (x^2 - x + 1)^n}{x^{2n}}$ $\frac{\left(x^4 + x^2 + 1\right)^n}{x^{2n}}$ coefficient of x^{2n} in $[1 + x^2 + x^4]^n$ let $x^2 = t$, $[1 + t + t^2]^n = a_0 + a_1t + ... + a_{2n}t^n$ So, coefficient of t^n is a_n Hence, coefficient of x^{2n} is $a_n = \gamma$ $\therefore \alpha + \beta + \gamma = 3^n + 1 + a_n$

Correct Options

Answer:01 Correct Options: B